Kernel-Based Manifold Learning for Statistical Analysis of Diffusion Tensor Images

نویسندگان

  • Parmeshwar Khurd
  • Ragini Verma
  • Christos Davatzikos
چکیده

Diffusion tensor imaging (DTI) is an important modality to study white matter structure in brain images and voxel-based group-wise statistical analysis of DTI is an integral component in most biomedical applications of DTI. Voxel-based DTI analysis should ideally satisfy two desiderata: (1) it should obtain a good characterization of the statistical distribution of the tensors under consideration at a given voxel, which typically lie on a non-linear submanifold of R6, and (2) it should find an optimal way to identify statistical differences between two groups of tensor measurements, e.g., as in comparative studies between normal and diseased populations. In this paper, extending previous work on the application of manifold learning techniques to DTI, we shall present a kernel-based approach to voxel-wise statistical analysis of DTI data that satisfies both these desiderata. Using both simulated and real data, we shall show that kernel principal component analysis (kPCA) can effectively learn the probability density of the tensors under consideration and that kernel Fisher discriminant analysis (kFDA) can find good features that can optimally discriminate between groups. We shall also present results from an application of kFDA to a DTI dataset obtained as part of a clinical study of schizophrenia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing and Analyzing Diffusion Tensor Images by Learning their Underlying Manifold Structure

The growing importance of diffusion tensor imaging (DTI) in studying the white matter architecture in normal and pathologic states necessitates the development of tools for comprehensive analysis of diffusion tensor data. Operations such as multivariate statistical analysis and hypothesis testing, interpolation and filtering, must now be performed on tensor data, and must overcome challenges in...

متن کامل

Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature

We propose a method for visualizing two-dimensional symmetric positive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is derived from the heat kernel and was originally introduced as an isometry invariant shape signature. Each positive definite tensor field defines a Riemannian manifold by considering the tensor field as a Riemannian metric. On this Riemmanian manifold we...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Canonical Correlation Analysis on Riemannian Manifolds and Its Applications

Canonical correlation analysis (CCA) is a widely used statistical technique to capture correlations between two sets of multi-variate random variables and has found a multitude of applications in computer vision, medical imaging and machine learning. The classical formulation assumes that the data live in a pair of vector spaces which makes its use in certain important scientific domains proble...

متن کامل

Segmenting Fiber Bundles in Diffusion Tensor Images

We consider the problem of segmenting fiber bundles in diffusion tensor images. We cast this problem as a manifold clustering problem in which different fiber bundles correspond to different submanifolds of the space of diffusion tensors. We first learn a local representation of the diffusion tensor data using a generalization of the locally linear embedding (LLE) algorithm from Euclidean to di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2007